ARC/HPC @ **OntarioTech**Fall Update

New Resources, Support and Training Courses

October 10, 2025, 12:00-1:00 pm

Armin Sobhani
SHARCNET | The Alliance
HPC Technical Consultant

asobhani@sharcnet.ca

🖄 armin.sobhani@ontariotechu.ca

https://staff.sharcnet.ca/asobhani

Supercomputing – Getting Help

Local Staff @ OntarioTech

HPC Technical Consultant
Faculty of Science, UA 3020
905-721-8668 x3607

asobhani@sharcnet.ca

armin.sobhani@ontariotechu.ca https://staff.sharcnet.ca/asobhani

Arrange an Office Visit for:

Use of systems

Installation of software

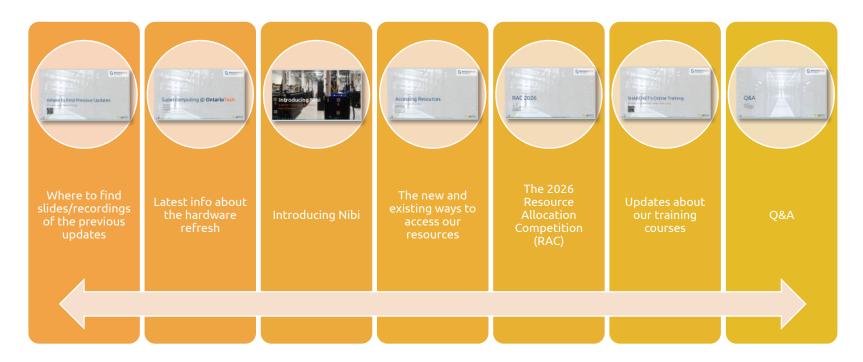
Access to commercial software and site licence

Debugging and optimizing code

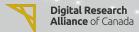
Programming

Consultation on various research problems

Grant application for compute hardware


...

In Today's Update...


Where to Find Previous Updates Slides and Recordings

Supercomputing @ OntarioTech

Academic / Research Computing @ OntarioTech

Campus IT Groups

Academic Computing

https://itsc.ontariotechu.ca/

OntarioTechU.Net

SHARCNET - HPC

Advanced Research Computing (ARC)

Research data management (RDM, e.g. for librarians)

Training on ARC, data science, machine learning

More: https://www.sharcnet.ca/

Academic / Research Computing @ OntarioTech

Campus IT Groups

Academic Computing

https://itsc.ontariotechu.ca/

OntarioTechU.Net

SHARCNET - HPC

Advanced Research Computing (ARC)

Research data management (RDM, e.g. for librarians)

Training on ARC, data science, machine learning

More: https://www.sharcnet.ca/

Academic / Research Computing @ OntarioTech

Campus IT Groups

Academic Computing

https://itsc.ontariotechu.ca/

OntarioTechU.Net

SHARCNET - HPC

Advanced Research Computing (ARC)

Research data management (RDM, e.g. for librarians)

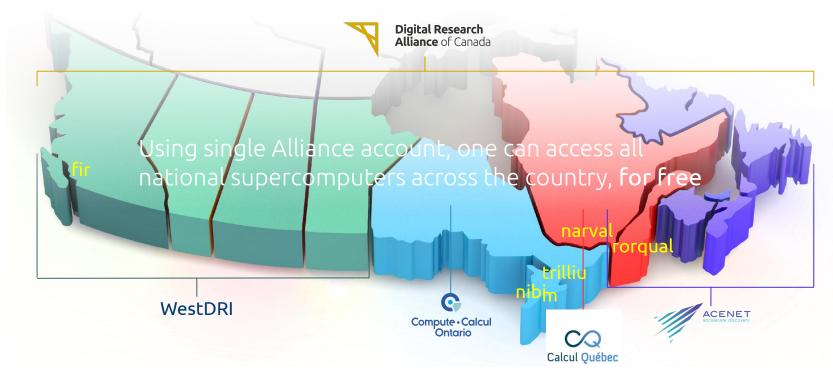
Training on ARC, data science, machine learning

More: https://www.sharcnet.ca/

To run large and exascale simulations that need dedicated access to hundreds of thousands CPU and GPU cores and low latency, fast interconnect fabric; or to run hundreds of thousands of simulations simultaneously

HPC Clouds Clusters (laaS) Storage

To run web services, databases or use virtual machines (VMs) with full control. The CPU and GPU resources are typically over committed, that is, a CPU core or GPU device might be shared by the running VMs


To store hundreds of thousands
TB of research data

Resources – What and Where They Are...

Supercomputing – Getting an Account

Sign up for an account (FREE)

http://ccdb.alliancecan.ca

Your supervisor should have an account

Students, postdoc, visiting scholars and other research staff can sign up for an account with supervisor's role ID (CCRI)

This account allows you to access all the supercomputers and clouds across the country

step-by-step

Multi-Factor Authentication (MFA) is now required

Digital Research Alliance of Canada

Supercomputing – Resources

Clusters across the Country

fir.alliancecan.ca

narval.alliancecan.ca

nibi.alliancecan.ca

rorqual.alliancecan.ca

trillium.alliancecan.ca

Cloud Services (IaaS)

<u>arbutus</u>.cloud.alliancecan.c

beluga.cloud.alliancecan.ca

<u>cedar</u>.cloud.alliancecan.ca

nibi.cloud.alliancecan.ca

Storage Space

home 50G, backed up

project 1T per group, backed up

scratch 20T per user, purged 60 days

> nearline capes) - archive

Clusters across the Country

fir.alliancecan.ca

narval.alliancecan.ca

nibi.alliancecan.ca

rorqual.alliancecan.ca

trillium.alliancecan.ca

Cloud Services (IaaS)

<u>arbutus</u>.cloud.alliancecan.c

beluga.cloud.alliancecan.ca

<u>cedar</u>.cloud.alliancecan.ca

nibi.cloud.alliancecan.ca

Storage Space

home 50G, backed up

project
1T per group, backed up

scratch 20T per user, purged 60 days

> nearline tapes) - archive

Clusters across the Country

fir.alliancecan.ca

narval.alliancecan.ca

rorqual.alliancecan.ca

trillium.alliancecan.ca

Cloud Services (IaaS)

arbutus.cloud.alliancecan.c

Storage Space

home 50G, backed up

project

scratch

nearline

Clusters across the Country

fir.alliancecan.ca

narval.alliancecan.ca

nibi.alliancecan.ca

rorqual.alliancecan.ca

trillium.alliancecan.ca

Cloud Services (IaaS)

<u>arbutus</u>.cloud.alliancecan.c

beluga.cloud.alliancecan.ca

<u>cedar</u>.cloud.alliancecan.ca

nibi.cloud.alliancecan.ca

Storage Space

home 50G, backed up

project
1T per group, backed up

scratch 20T per user, purged 60 days

> nearline tapes) - archive

Clusters across the Country

fir.alliancecan.ca

narval.alliancecan.ca

nibi.alliancecan.ca

rorqual.alliancecan.ca

trillium.alliancecan.ca

Cloud Services (IaaS)

<u>arbutus</u>.cloud.alliancecan.ca

beluga.cloud.alliancecan.ca

<u>cedar</u>.cloud.alliancecan.ca

<u>ibi</u>.cloud.alliancecan.ca

Latest Status

https://status.alliancecan.ca/

Resources – HPC Clusters and Storage

National systems at a glance

Resource	Fir	Narval	Nibi	Rorqual	Trillium	Total
CPU cores	165,120	83,216	134,400	131,712	235,008	749,456
GPUs (H100)	640	632	312 ¹	324	244	2,152
Storage ²	51PB	35PB	25PB	62PB	29PB	202PB

Source: https://docs.alliancecan.ca/wiki/National systems

- 1. Nibi has 36 nodes of 8 x NVIDIA H100s and 6 nodes of 4 x AMD Mi300As.
- 2. These numbers represent the major storage.

Systems being decommissioned, dates of closures:

- cedar (2019-2025), September 12, 2025
- graham (2017-2025), September 1, 2025niagara (2017-2025), September 30, 2025
- béluga (2019-2025), July 31, 2025, login only



Nibi Specs – CPU Nodes

Nodes	Cores	Метогу	Storage	СРИ
700	192	748 GB	3 TB	2 x Intel 6972P @ 2.4 GHz
10	192	6 TB	3 TB	2 x Intel 6972P @ 2.4 GHz

- 134,400 CPU cores
- 200 Gbit/s network bandwidth for CPU nodes
- All have Internet access
- · Liquid immersion cooling

Nibi Specs – GPU Nodes

Nodes	Согеѕ	Метогу	Storage	GPU
36	112	2 TB	11 TB	8 x Nvidia H100 SXM (80 GB)
6	96	495 GB	3 TB	4 x AMD MI300A

- 312 GPUs
- 200 Gbit/s network bandwidth for GPU nodes
- All have Internet access
- · Direct-to-chip liquid cooling

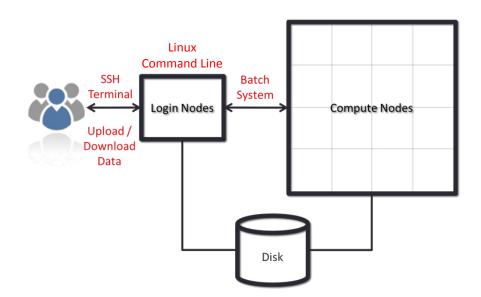
Nibi Specs – Storage

Parallel filesystem from VAST Data

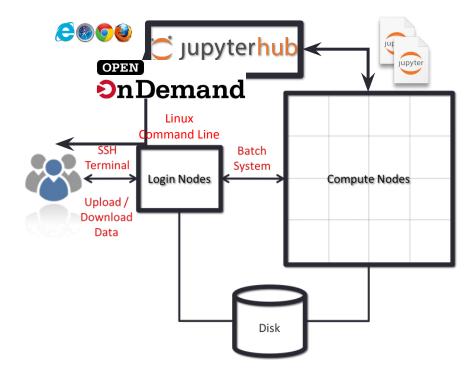
25 petabytes

All SSD

Accessing Resources

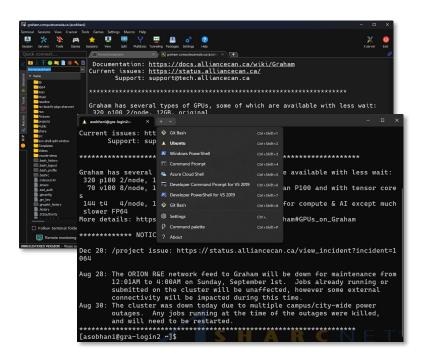

The new and existing ways

Resources – Connecting to Clusters



Resources – Connecting to Clusters

Connecting to Clusters – SSH Terminal

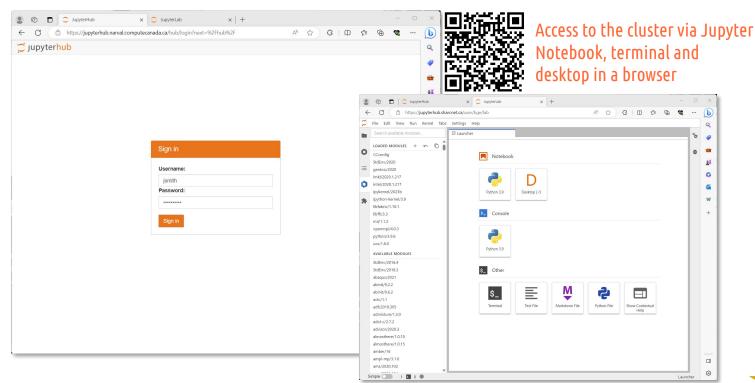

SSH Client

Windows 10 and 11

- Windows Terminal
 - OpenSSH in PowerShell or CMD
 - WSL
 - Git Bash
- MohaXterm

Linux and Mac

- OpenSSH
- ssh username@nibi.alliancecan.ca



Connecting to Clusters – JupyterHub

Connecting to Clusters - OPEN ON Demand

Resources – Connecting to Cloud

- arbutus.cloud.alliancecan.ca
- beluga.cloud.alliancecan.ca
- cedar.cloud.alliancecan.ca
- nibi.cloud.alliancecan.ca

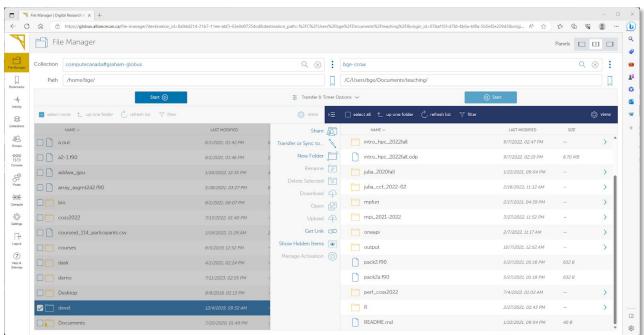
Allocated 1 of 1

Usage Summary

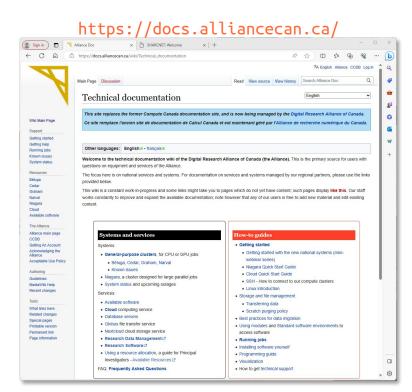
Select a period of time to guery its usage:

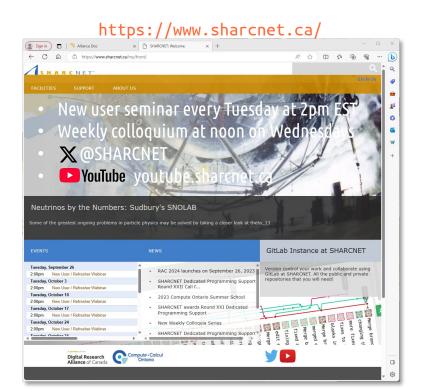
🖒 | 🐧 Verify it's you

- A cloud project must be created by the PI
- No Windows images, all VMs are Linux
- Up to 80 virtual CPU cores
- May have virtual GPUs
- Up to 10 TB storage
- Up to 25 persistent CPU cores



Resources – Transferring Files via Globus


Check https://docs.alliancecan.ca/wiki/Globus. Go to https://globus.alliancecan.ca/ and follow the instructions



Resources – Getting Help

Resources – Getting Help

Help from beyond **OntarioTech**

Weekly Q&A session:
https://www.sharcnet.ca/my/news/calendar

Ticketing system (most recommended):

support@tech.alliancecan.ca

Staff contact info to email or phone:
https://www.sharcnet.ca/my/contact/directory

RAC 2026

Digital Research Alliance of Canada

Resources - Caps

Default Access

Compute – No limit in CPU and GPU cores, but low priority, hence longer wait time.

Storage – Limited storage space

- 50 GB home
- 1 TB project work space
- 20 TB scratch
- 10 TB nearline (tape)

Cloud – Limited cloud resources

- -80 VCPU years
- Persistent 25 VCPU years
- 10 TB volume and snapshot storage

Request – No

Rapid Access Service (RAS)

Compute – May ask for increase in priority *temporarily*, to bump up jobs with that have deadlines.

Storage

- project up to 40 TB over all clusters
- nearline up to 100 TB
- Not available at some sites.

Cloud – Moderate increase.

Request – Any time

Resource Allocation Competition (RAC)

Compute – Best assurance of priority access to allocated number of CPU cores (200+) and GPU (25 RGUs).

Storage – Guaranteed access to:

- project (40+ TB)
- nearline (100+ TB)

Cloud – Guaranteed access to to allocated cloud resources

Request – Annual application

RAS vs. RAC

RAS

Rapid Access Service

AKA Default Allocation

CPU/GPU: Opportunistic

Storage: 40 TB across all clusters

Cloud compute instance: 1 month

Cloud persistent instance: 1 year

RAC

Resource Allocation Competition

Annual (in fall)

Peer-reviewed (scientific and technical)

Roughly 80% of resources

RAS vs. RAC

RAS

Rapid Access Service

AKA Default Allocation

CPU/GPU: Opportunistic

Storage: 40 TB across all clusters

Cloud compute instance: 1 month

Cloud persistent instance: 1 year

RAC

Resource Allocation Competition

Annual (in fall)

Peer-reviewed (scientific and technical)

Roughly 80% of resources

RAS vs. RAC

RAS

Rapid Access Service

AKA Default Allocation

CPU/GPU: Opportunistic

Storage: 40 TB across all clusters

Cloud compute instance: 1 month

Cloud persistent instance: 1 year

RAC

Resource Allocation Competition

Annual (in fall)

Peer-reviewed (scientific and technical)

Roughly 80% of resources

RAC – Types

RRG

Resources for Research Groups

Resource: Compute and/or Storage

CPU ≥ 200 core-years, or

GPU ≥ 25 reference GPU units (RGU) years, or

or project storage ≥ 41 TB, or

or nearline storage ≥ 101 TE

RPP

Research Platforms and Portals

Resource: Cloud

Persistent cloud storage ≥ 1 TB, or

Compute cloud ≥ 81 vCPUs, or

Persistent cloud ≥ 26 vCPUs

RAC – Types

RRG

Resources for Research Groups

Resource: Compute and/or Storage

CPU ≥ 200 core-years, or

GPU ≥ 25 reference GPU units (RGU) years, or

or project storage ≥ 41 TB, or

or nearline storage ≥ 101 TE

RPP

Research Platforms and Portals

Resource: Cloud

Persistent cloud storage ≥ 1 TB, or

Compute cloud ≥ 81 vCPUs, or

Persistent cloud ≥ 26 vCPUs

RAC – Types

RRG

Resources for Research Groups

Resource: Compute and/or Storage

CPU ≥ 200 core-years, or

GPU ≥ 25 reference GPU units (RGU) years, or

RPP

Research Platforms and Portals

Resource: Cloud

Compute cloud ≥ 81 vCPUs, or

Persistent cloud ≥ 26 vCPUs

2026 RAC – Important Info

Important Dates

Applications accepted: September 23 to November 4, 2025

Announcement of Results: late March 2026

Implementation of allocations: early April 2026

2026 RAC – Links

Guides

Application Form

SHARCNET's Online Training

https://training.sharcnet.ca/

Introduction to ARC Series

Intro to ARC

Starts in early October

Two 1-hour classes each week

Include lectures and labs

Topics

HPC Python

Julia

PyTorch

Jupyter

Apptainer

CMake MPI

MATLAB

SHARCNET's Self-Paced Courses (NEW)

Self-Paced Courses

Just google for SHARCNET self-paced

Online self-directed courses, with quizzes and/or home assignments

If successfully completed, the Certificate of Completion will be issued

Available Courses

Introduction to GPU Programming

Introduction to Machine Learning

Introduction to the Shell

Coming Soon

Introduction to SQL

Introduction to Supercomputing

New Alliance User course

Parallel Code Debugging and Profiling

Other SHARCNET's Online Training

Weekly Compute Ontario Colloquia Series

Every Wednesday at 12pm-1pm, online

Topics of general interest to our

Delivered by SHARCNET, SciNet and CAC staff, plus quest speakers

No registration is required

Alliance account is not required

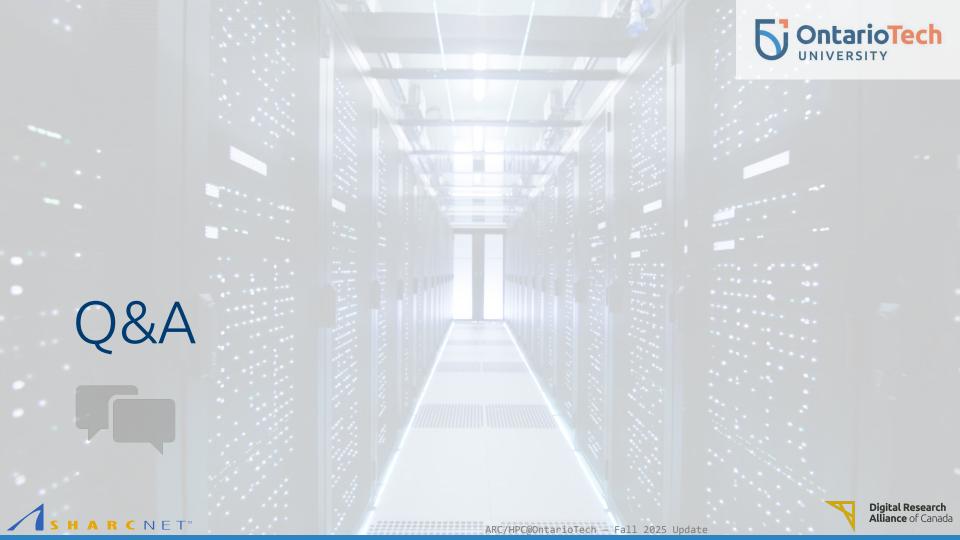
Compute Ontario Summer Schools

Every June

Three weeks, 2 parallel streams, ~40 courses

Alliance account is not required

SHARCNET's YouTube Channel


http://youtube.sharcnet.ca

Hundreds of webinar recordings and short videos

