
Using High-Performance, Advanced, and Cloud Computing
Resources for Research

Paul Preney, OCT, M.Sc., B.Ed., B.Sc.
preney@sharcnet.ca / preney@uwindsor.ca

School of Computer Science / Office of Research and Innovation Services (ORIS)
University of Windsor, Windsor, Ontario, Canada

Copyright © 2023 Paul Preney. All Rights Reserved.

Sept. 29, 2023

1 / 85

mailto:preney@sharcnet.ca
mailto:preney@uwindsor.ca


Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

2 / 85



What is SHARCNET?

SHARCNET:
Shared Hierarchical Academic Research Computing
Network.
provides free access to high performance, advanced, and
cloud computing and corresponding compute, cloud,
and storage resources and services to researchers
weekly new user seminars, biweekly webinars, summer
school courses, and other training activities, e.g., see
https://training.sharcnet.ca

3 / 85

https://training.sharcnet.ca


What is SHARCNET? (con’t)

URL: https://www.sharcnet.ca/
Started in 2001.
Founding members:

Fanshawe College, University of Guelph, McMaster University, Sheridan College, Western
University, Wilfred Laurier University, University of Windsor

Today’s members include:
… Brock, Conestoga, Durham, Lakehead, Laurentian, Nipissing, Ontario College of Art
and Design University, Ontario Tech University, Perimeter Institute, Trent, Waterloo,
York

Part of Compute Ontario which is part of the Digital Research Alliance of Canada.

4 / 85

https://www.sharcnet.ca/


What is Compute Ontario?

Compute Ontario, https://computeontario.ca:
Plays a key role in coordinating Ontario’s advanced
research computing and big data focus
Has these four partners:

SHARCNET
SciNet
Centre for Advanced Computing
HPC4Health

5 / 85

https://computeontario.ca


What is the Digital Research Alliance of Canada?

The Alliance, https://www.alliancecan.ca has these regional
partners:

ACENET (New Brunswick, Nova Scotia, P.E.I.,
Newfoundland and Labrador)
Calcul Québec (Québec)
Compute Ontario (Ontario)
Prairies DRI (Alberta, Saskatchewan, Manitoba)
BC DRI (British Columbia)

6 / 85

https://www.alliancecan.ca


Some Important Details

Cost:
Access is free to researcher faculty at Canadian academic research institutions.
We are funded directly and indirectly through various federal and provincial grants.

Limited to research.
e.g., undergraduate course work is not permitted

Faculty members (PIs) sponsor some number of users.
Jobs/activities are associated with a sponsor PI who supervises that research.
Users can have more than one sponsor PI.
All accounts must be renewed every year to remain active.
New accounts are not made later, to re-activate an inactive account log in to the
CCDB web site and apply for a new role: https://ccdb.alliancecan.ca/.

7 / 85

https://ccdb.alliancecan.ca/


Acquiring an Account

To obtain access, apply for an account:
https://alliancecan.ca/en/services/advanced-research-computing/
account-management/apply-account
Or equivalently, go to https://docs.alliancecan.ca and click on Getting an
Account in the left-hand side menu.

8 / 85

https://alliancecan.ca/en/services/advanced-research-computing/account-management/apply-account
https://alliancecan.ca/en/services/advanced-research-computing/account-management/apply-account
https://docs.alliancecan.ca


Acquiring an Account (con’t)

If you are a student / doing work under a PI:
It is important that your supervisor first acquires/activates their account before
you can apply for your own account.
You will need to know your supervisor’s CCRI number (which PIs can get by
logging in to the CCDB) before you can apply for your own account.

9 / 85



Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

10 / 85



What a Server Room Looks Like

Early picture of Graham server room (at UWaterloo) under construction:

11 / 85



Hardware Resources

General-Purpose Clusters:

beluga.alliancecan.ca
28 PB disk; 974 nodes: 196 TB RAM,
38,960 CPUs, 688 GPUs

Intel Xeon Sky Lake
NVIDIA V100SXM2 (16 GB RAM)

cedar.alliancecan.ca
29 PB disk; 2,470 nodes: 478 TB
RAM, 100,400 CPUs, 1,352 GPUs

Intel Xeon: Broadwell, Sky Lake;
Cascade Lake
NVIDIA P100 (12GB & 16GB HBM2
RAM), V100 (32G HBM2 RAM)

graham.alliancecan.ca
20 PB disk; 1,327 nodes: 202 TB
RAM, 44,444 CPUs, 534 GPUs

Intel Xeon: Broadwell, Sky Lake,
Cascade Lake
NVIDIA P100 (12GB HBM2 RAM),
V100 (16GB HBM2 RAM), T4
(16GB GDDR6 RAM)

narval.alliancecan.ca
25 PB disk; 1,340 nodes: 443 TB
RAM, 83,216 CPUs, 636 GPUs

AMD Rome and Milan
NVIDIA A100 (40 GB RAM)

12 / 85



Hardware Resources(con’t)

Large-Parallel Job Cluster:
niagara.alliancecan.ca

37 PB disk; 1,728 nodes: 349 TB
RAM, 69,120 CPUs

Intel Xeon Sky Lake
Scheduling by node only.

Cloud Systems (details omitted):
arbutus.cloud.alliancecan.ca
east.cloud.alliancecan.ca
graham.cloud.alliancecan.ca
cedar.cloud.alliancecan.ca

Storage space:
/home: 50 GB per user, backed up
/project:

1 TB per PI group
up to 40 TB by request
backed up

/scratch:
20 TB per user
up to 200 TB by request
old files removed after 60 days

/nearline: (tape)

13 / 85



Other Resources

A wiki with lots of useful technical documentation (https://docs.alliancecan.ca/):

14 / 85

https://docs.alliancecan.ca/


Other Resources (con’t)

Compute cluster login node access via secure shell (SSH):

15 / 85



Other Resources (con’t)

3D-accelerated Graham-cluster-only graphical “gra-vdi” login nodes (using TigerVNC;
https://docs.alliancecan.ca/wiki/VNC):

16 / 85

https://docs.alliancecan.ca/wiki/VNC


Other Resources (con’t)

Cloud node management access portals using OpenStack
(https://docs.alliancecan.ca/wiki/Cloud_Quick_Start):

17 / 85

https://docs.alliancecan.ca/wiki/Cloud_Quick_Start


Other Resources (con’t)

JupyterHub Web Portals (https://docs.alliancecan.ca/wiki/JupyterHub):

18 / 85

https://docs.alliancecan.ca/wiki/JupyterHub


Other Resources (con’t)

JupyterHub Web Portals also support graphical desktops:

NOTE: Use gra-vdi if interactive 3D hardware acceleration is needed.

19 / 85



Other Resources (con’t)

Online training materials/courses:
SHARCNET: https://training.sharcnet.ca
Compute Ontario Summer Schools: https://training.computeontario.ca

Weekly (online) webinars and their recordings:
https://www.computeontario.ca/training-colloquia

Weekly (online) new user / refresher webinar:
Tuesdays 2pm to 3pm: https://training.sharcnet.ca/courses/course/view.php?id=34

20 / 85

https://training.sharcnet.ca
https://training.computeontario.ca
https://www.computeontario.ca/training-colloquia
https://training.sharcnet.ca/courses/course/view.php?id=34


Other Resources (con’t)

Support through (email) tickets, i.e., support@tech.alliancecan.ca

Support from expert staff via:
ticketing system
video conferencing
direct email (ticketing system is preferred)
in-person (if at same institution)
telephone (if needed)

21 / 85

mailto:support@tech.alliancecan.ca


Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

22 / 85



Cluster Computing Environment

OS: 64-bit Linux
Supported programming languages include:

C, C++, Fortran, Java, Julia, MATLAB, Octave, Python, R, etc.
A large variety of open source (and some commercial) software packages.
Parallel development, e.g.,

C: multithreading since 2011 standard
C++: multithreading since 2011 standard
Fortran: since 2003 standard
Julia: shared and distributed memory
MPI, Chapel: shared and distributed memory systems
OpenMP, pthreads: shared memory (single node)
CUDA, OpenACC, OpenCL: GPUs

Data science support:
DASK, Julia, Jupyter, Python, R, etc.

23 / 85



Cluster Computing Environment (con’t)

Container technology: Apptainer (Docker cannot be used.)
Compiler toolchains:

GNU Compiler Collection (GCC)
Clang/LLVM
Intel OneAPI (and legacy)
NVIDIA nvhpc

+ one can install additional softwares in one’s own account.

24 / 85



Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

25 / 85



Clusters Are Different Than Your Computer

On your own computer:
You typically run programs/jobs on-demand since you are the only user.
Programs/jobs typically have access to all resources (CPUs, GPUs, disk space, etc.).

26 / 85



Clusters Are Different Than Your Computer (con’t)

On clusters:
There are many users able to submit jobs to run at any time.

Unlike your personal computer where there is one user.
Each submitted job needs to provide:

how much RAM (at most) the job requires,
how many CPUs are required,
if needed, how many GPUs are required,
how much time (at most) the job will run for, and,
which PI account the job is to be run under.

The scheduler then determines when the submitted job can be run with its
requirements in a fair manner.
Jobs run non-interactively with no access to a keyboard, mouse, screen, etc.
Job input and output needs to be from/to files.

27 / 85



Development and Testing

Generally each cluster has a login node and a set of compute nodes.
Program development, debugging, and testing can be done:

within an interactive scheduler (Slurm) job,
on login node if and only if such does not significantly use resources (time, RAM, or
CPUs), or,
using your own computer.

Jobs are typically submitted from a login node.
Login node access is via SSH.

28 / 85



Maximizing Job Throughput

All jobs are submitted to a queue to run:
Your research team ideally wants to always have jobs in the queue waiting to be
run to maximize throughput.
Every individual and every team has fair-share priority.

29 / 85



Supported Software and Systems

Available software on our clusters:
https://docs.alliancecan.ca/wiki/Available_software

Upon request, we work with researchers to help install and use software on our systems.

30 / 85

https://docs.alliancecan.ca/wiki/Available_software


Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

31 / 85



Why Use Supercomputing Resources?

You do not have sufficient CPU/GPU cores.
You do not have sufficient memory (RAM or storage).
You need a lot of disk space, e.g., hundreds of TBs.
You need to run a lot of simulations needing hundreds of cores.
You need to run a large number of simulations in parallel.
You need to run web services.
You need to run an SQL database to service compute jobs / cloud resources.
You need to make use of cloud resources.

32 / 85



Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

33 / 85



2024 Resource Allocation Competition (RAC)

Each year there is a Resource Allocation Competition (RAC):
Peer-reviewed competition
For research projects that need resources significantly beyond what is normally
available.

34 / 85



2024 Resource Allocation Competition (RAC) (con’t)

There are two competitions:
Research Platforms and Portals (RPP) which primarily involves using cloud(s).
Resources for Research Groups (RRG) which primarily involves using compute
cluster(s).

35 / 85



2024 Resource Allocation Competition (RAC) (con’t)
Key Dates for RAC:

RRG & RPP applications: Sept. 26 to Nov. 7, 2023
General information session: Sept. 28, 2023 (English), Sept. 29, 2023 (French)
GPU, etc. information session: Oct. 3, 2023 (English), Oct. 4, 2023 (French)
Results announcement: Late March 2024
Start of RAC allocations: Early April 2024

For detailed information see:
https://alliancecan.ca/en/services/advanced-research-computing/
accessing-resources/resource-allocation-competition/
resource-allocation-competition-application-guide
https://alliancecan.ca/en/services/advanced-research-computing/
accessing-resources/resource-allocation-competition

36 / 85

https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition/resource-allocation-competition-application-guide
https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition/resource-allocation-competition-application-guide
https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition/resource-allocation-competition-application-guide
https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition
https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition


2024 Resource Allocation Competition (RAC) (con’t)

Each 2024 RRG (compute) RAC application must meet at least one of these minimum
requirements:

CPU core years or equivalent: 200
GPU core years or equivalent: 25
Storage in TB: 41
Nearline storage (tape) in TB: 101
A submission is required if any dCache storage is needed.

37 / 85



2024 Resource Allocation Competition (RAC) (con’t)

Each 2024 RPP (cloud) RAC application must meet at least one of these minimum
requirements:

Virtual CPU years (VCPU): 81
Virtual GPU years (VGPU): 1.3
Persistent virtual CPU years (VCPU): 26
Volume and snapshot storage in TB: 11
Shared filesystem storage in TB: 11
Object storage in TB: 11

38 / 85



2024 Resource Allocation Competition (RAC) (con’t)

All information, links to information sessions, etc. can be found at:
https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/
resource-allocation-competition and in the “RAC Competition Guide”.

There is a technical glossary of terms for RACs: https://docs.alliancecan.ca/wiki/
Technical_glossary_for_the_resource_allocation_competitions.

One can request staff interaction for RAC applications by:
send an email to support@tech.alliancecan.ca requesting such to open a ticket.

39 / 85

https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition
https://alliancecan.ca/en/services/advanced-research-computing/accessing-resources/resource-allocation-competition
https://docs.alliancecan.ca/wiki/Technical_glossary_for_the_resource_allocation_competitions
https://docs.alliancecan.ca/wiki/Technical_glossary_for_the_resource_allocation_competitions
mailto:support@tech.allianecan.ca


Table of Contents

SHARCNET, Compute Ontario, and the Alliance
Available Resources
Cluster Computing Environment
Compute Jobs
Why Use Supercomputing Resources?
2024 Resource Allocation Competition (RAC)
Questions, Answers, and Discussion

40 / 85



Questions, Answers, and Discussion

Thank you!
Questions, answers, and discussion.

41 / 85



Table of Contents

Appendix Overview
Software/Environment Modules on Clusters
Slurm Scheduler Use
Julia Set Fractal Example

42 / 85



Appendix Overview

These appendices are extra slides provided should such need referring to in the
presentation and/or should one be viewing these slides at a later date.

43 / 85



Table of Contents

Appendix Overview
Software/Environment Modules on Clusters
Slurm Scheduler Use
Julia Set Fractal Example

44 / 85



Software/Environment Modules on Clusters

A lot of software programs as well as many versions of those softwares are available
on clusters.
These can be utilized by using the module command.

45 / 85



Software/Environment Modules on Clusters (con’t)

Some examples:
module reset: reset loaded modules back to defaults upon login
module avail: shows names of software packages that are available with the
currently loaded modules
module spider PKGNAME: shows information about PKGNAME and its versions
module spider PKGNAME/VERSION: shows information about version VERSION of
PKGNAME and how it must be loaded
module load PKGNAME: loads the default version of PKGNAME
module load PKGNAME/VERSION: loads version VERSION of PKGNAME
module unload PKGNAME: unloads PKGNAME

46 / 85



Table of Contents

Appendix Overview
Software/Environment Modules on Clusters
Slurm Scheduler Use
Julia Set Fractal Example

47 / 85



Slurm Scheduler Use

The Slurm scheduler allows one to control and/or query information about
non-interactive and interactive jobs with these commands:

sbatch: submits a job into the scheduler’s job queue
salloc: requests an interactive job (max: 3h)
scancel: cancels a job
squeue: see jobs currently in job queue on cluster
sacct: see history of jobs run

48 / 85



sbatch

The sbatch command is typically invoked like this:
sbatch --account ACCTNAME jobscript.sh

where:
ACCTNAME is the name of the PI account the job will run under
jobscript.sh is the name of the job script to run

49 / 85



sbatch Sequential Examples

An example jobscript.sh to run an instance of a sequential program:
sequential.sh

1 #!/bin/bash
2 #SBATCH --time=0-05:00 # D-HHⶑⷝMM, i.e., 5 hours (max)
3 #SBATCH --mem=4000M # i.e., ~4 GB RAM
4

5 ./sequential-program.exe

50 / 85



sbatch Sequential Examples (con’t)

An example jobscript.sh to run 100 instances of a sequential program:
sequential-array.sh

1 #!/bin/bash
2 #SBATCH --time=0-05:00 # D-HHⶑⷝMM, i.e., 5 hours (max)
3 #SBATCH --mem=4000M # i.e., ~4 GB RAM
4 #SBATCH --array=1-100
5

6 # Pass $SLURM_ARRAY_TASK_ID to program so it knows which one it is⵴ⷀ⸌
7 ./sequential-program.exe $SLURM_ARRAY_TASK_ID

51 / 85



sbatch Sequential Examples (con’t)

An example jobscript.sh to run a single CPU, single GPU program:
gpu-seq.sh

1 #!/bin/bash
2 #SBATCH --time=0-11:00
3 #SBATCH --mem=4000M
4 #SBATCH --gpus-per-node=1
5

6 ./gpu-program.exe

52 / 85



sbatch Multithreaded Examples

An example jobscript.sh to run a multithreaded program using 10 threads (limited to a
single node):

mt.sh
1 #!/bin/bash
2 #SBATCH --time=0-05:00 # D-HHⶑⷝMM, i.e., 5 hours (max)
3 #SBATCH --ntasks=1
4 #SBATCH --cpus-per-task=10
5 #SBATCH --mem-per-cpu=1024M # i.e., ~1 GB RAM per CPU
6

7 ./multithreaded-program.exe

53 / 85



sbatch Multithreaded Examples (con’t)

An example jobscript.sh to run an OpenMP program using 10 threads (limited to a
single node):

openmp.sh
1 #!/bin/bash
2 #SBATCH --time=0-05:00 # D-HHⶑⷝMM, i.e., 5 hours (max)
3 #SBATCH --ntasks=1
4 #SBATCH --cpus-per-task=10
5 #SBATCH --mem-per-cpu=1024M # i.e., ~1 GB RAM per CPU
6

7 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
8 ./openmp-program.exe

54 / 85



sbatch Multithreaded Examples (con’t)

An example jobscript.sh to run a six CPU, single GPU OpenMP program:
gpu-openmp.sh

1 #!/bin/bash
2 #SBATCH --time=0-11:00
3 #SBATCH --mem=4000M
4 #SBATCH --gpus-per-node=1
5 #SBATCH --cpus-per-task=6
6 #SBATCH --mem=4000M # i.e., total memory needed
7

8 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
9 ./gpu-program.exe

55 / 85



sbatch MPI Examples

An example jobscript.sh to run an MPI program using 8 MPI processes:
mpi.sh

1 #!/bin/bash
2 #SBATCH --time=0-05:00 # D-HHⶑⷝMM, i.e., 5 hours (max)
3 #SBATCH --ntasks=8
4 #SBATCH --mem-per-cpu=1024M # i.e., ~1 GB RAM per CPU
5

6 srun ./mpi-program.exe

56 / 85



sbatch MPI Examples (con’t)

An example jobscript.sh to run an MPI program using 8 GPUs with 6 CPUs per GPU:
gpu-mpi.sh

1 #!/bin/bash
2 #SBATCH --time=0-11:00
3 #SBATCH --gpus=8
4 #SBATCH --ntasks-per-gpu=1
5 #SBATCH --cpus-per-task=6
6 #SBATCH --mem-per-cpu=5G
7

8 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
9 srun --cpus-per-task=$SLURM_CPUS_PER_TASK ./mpi-gpu-program.exe

57 / 85



sbatch Whole Node Example

An example jobscript.sh to run a program exclusively on an entire node:
whole-node.sh

1 #!/bin/bash
2 #SBATCH --nodes=1
3 #SBATCH --gpus-per-node=p100:2 # i.e., 2 NVIDIA Pascal GPUs
4 #SBATCH --ntasks-per-node=32 # i.e., node needs at least 32 CPUs
5 #SBATCH --mem=0 # i.e., use all memory on node
6 #SBATCH --time=0:03:00
7

8 ./whole-node-gpu-program.exe

58 / 85



salloc

The salloc command is invoked by passing on a single command line all of the SBATCH
options needed for the job, e.g.,

salloc --account ACCTNAME --time=0-03:00 --cpus-per-task=10 --mem-per-cpu=1024M

After a wait for an available machine with those resources, you will be logged in to such.

59 / 85



scancel

The scancel command is invoked by passing the job number one wishes to cancel, e.g.,
scancel 32385923

60 / 85



Table of Contents

Appendix Overview
Software/Environment Modules on Clusters
Slurm Scheduler Use
Julia Set Fractal Example

61 / 85



Julia Set Fractal Example

Let’s consider a program that computes the Julia Set,
https://en.wikipedia.org/wiki/Julia_set, fractal.
To determine whether or not a particular complex value is in the Julia set, one can map
a 2D point, (x, y) to a complex value, z, and then repeatedly compute z = z2 + c, where c
is fixed, and check whether or not z escapes some threshold value.

if the threshold is not exceeded after a maximum number of iterations, then it is in
the Julia Set,
otherwise it is considered not to be in the Julia Set.

62 / 85

https://en.wikipedia.org/wiki/Julia_set


Julia Set Fractal Example (con’t)

63 / 85



Some C Code…
C has built-in complex numbers, e.g., float _Complex, which makes this easier to write:

julia.c
1 #include <complex.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4
5 typedef unsigned short pixel_type;
6 typedef unsigned short coord_type;
7
8 #define DIM 10000
9

10 inline float cnormf(float _Complex const x)
11 {
12 return crealf(x) * crealf(x) + cimagf(x) * cimagf(x);
13 }
14
15 pixel_type julia(coord_type x, coord_type y)

julia.c
16 {
17 float const scaling = 1.5;
18 float _Complex const c = -0.8f + 0.156f * _Complex_I;
19
20 float const scaled_x = scaling * ((float)(DIM/2) -

x)/(DIM/2);↪→
21 float const scaled_y = scaling * ((float)(DIM/2) -

y)/(DIM/2);↪→
22 float _Complex z = scaled_x + scaled_y * _Complex_I;
23
24 for(unsigned short iter = 0; iter < 1000; ㇌㇏iter)
25 {
26 z = z * z + c;
27 if (cnormf(z) > 1000)
28 return 0;
29 }
30 return 1;
31 }

64 / 85



Some C++ Code…
C++ code equivalent to the C code presented:

julia.cxx
1 #include <atomic>
2 #include <chrono>
3 #include <complex>
4 #include <fstream>
5 #include <iostream>
6 #include <vector>
7 #include "now.hxx"
8
9 using namespace std;

10
11 using pixel_type = unsigned short;
12 using coord_type = unsigned short;
13
14 constexpr coord_type DIM = 10000;
15
16 pixel_type julia(coord_type const x, coord_type const y)
17 {
18 constexpr float scaling = 1.5f;
19 constexpr complex<float> c{-0.8f, 0.156f};

65 / 85



Some C++ Code… (con’t)

20
21 float scaled_x = scaling * (float(DIM/2) - x)/(DIM/2);
22 float scaled_y = scaling * (float(DIM/2) - y)/(DIM/2);
23 complex<float> z{scaled_x, scaled_y};
24
25 for (unsigned short i=0; i ㅍ〼 1000; ㇌㇏i)
26 {
27 z = z*z + c;
28 if (norm(z) > 1000)
29 return 0;
30 }
31 return 1;
32 }

Subsequent presented code will be C++ code.

66 / 85



Some C++ Code… (con’t)

We will not parallelize the julia(x,y) function:
its code is simple, and,
the number of loop iterations required for any point (x, y) is unknown.

Instead we will focus on calling julia(x,y) in parallel.
First, let’s look at what needs to be done sequentially…

67 / 85



C++ Code for Reliable Timings
It is important to have a way to benchmark function calls:

now.hxx
1 #ifndef now_hxx_
2 #define now_hxx_
3
4 #include <atomic>
5 #include <chrono>
6
7 ⶩⷵ Include Google Benchmark (https:ⶩⷵgithub.com/google/benchmark)⵴ⷀ⸌
8 #include <benchmark/benchmark.h>
9

10 inline void dno() noexcept { }
11
12 template <typename Arg, typename⵬ⶴⷼ Args>
13 inline void dno(Arg arg, Args&&⵬ⶴⷼ args)
14 {
15 benchmarkⶇ⷏DoNotOptimize(arg);
16 dno(stdⶇ⷏forward<Args>(args)⵬ⶴⷼ);

68 / 85



C++ Code for Reliable Timings (con’t)

17 }
18
19 template <typename⵬ⶴⷼ Args>
20 inline auto now(Args&&⵬ⶴⷼ args) ⾝ㄦ
21 stdⶇ⷏chronoⶇ⷏time_point<stdⶇ⷏chronoⶇ⷏steady_clock>
22 {
23 using namespace std;
24 dno(stdⶇ⷏forward<Args>(args)⵬ⶴⷼ);
25 auto tp = chronoⶇ⷏steady_clockⶇ⷏now();
26 dno(tp);
27 return tp;
28 }
29
30 #endif

69 / 85



main()
The rest of the program is in main():

julia.cxx
34 int main()
35 {
36 vector<pixel_type> v(DIM*DIM);
37
38 ⶩⷵ "kernel" code to compute the Julia set⵴ⷀ⸌
39 auto t0 = now(v.data()); ⶩⷵ get start time_point
40 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
41 for (coord_type x = 0; x ㅍ〼 DIM; ㇌㇏x)
42 v[y*DIM+x] = julia(x,y);
43 auto t1 = now(v.data(),t0); ⶩⷵ get stop time_point
44
45 ⶩⷵ output elapsed time in seconds⵴ⷀ⸌
46 cout ㄲ㄰ "elapsed time: " ㄲ㄰ chronoⶇ⷏duration<double>(t1-t0).count() ㄲ㄰ " seconds\n";
47

70 / 85



main() (con’t)

48 ⶩⷵ write output to file⵴ⷀ⸌
49 ofstream out("julia.dat");
50 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
51 for (coord_type x = 0; x ㅍ〼 DIM; ㇌㇏x)
52 {
53 if (v[y*DIM+x] かや 1)
54 out ㄲ㄰ x ㄲ㄰ ' ' ㄲ㄰ y ㄲ㄰ '\n';
55 }
56 }

71 / 85



Parallelizing with OpenMP
OpenMP code:

julia-openmp.cxx
34 int main()
35 {
36 vector<pixel_type> v(DIM*DIM);
37
38 ⶩⷵ "kernel" code to compute the Julia set⵴ⷀ⸌
39 auto t0 = now(v.data()); ⶩⷵ get start time_point
40 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
41 #pragma omp parallel for
42 for (coord_type x = 0; x < DIM; ㇌㇏x)
43 v[y*DIM+x] = julia(x,y);
44 auto t1 = now(v.data(),t0); ⶩⷵ get stop time_point
45
46 ⶩⷵ output elapsed time in seconds⵴ⷀ⸌
47 cout ㄲ㄰ "elapsed time: " ㄲ㄰ chronoⶇ⷏duration<double>(t1-t0).count() ㄲ㄰ " seconds\n";
48
49 ⶩⷵ write output to file⵴ⷀ⸌
50 ofstream out("julia.dat");
51 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
52 for (coord_type x = 0; x ㅍ〼 DIM; ㇌㇏x)

72 / 85



Parallelizing with OpenMP (con’t)

53 {
54 if (v[y*DIM+x] かや 1)
55 out ㄲ㄰ x ㄲ㄰ ' ' ㄲ㄰ y ㄲ㄰ '\n';
56 }
57 }

73 / 85



C++17 Parallel Algorithms v1
C++17 parallel algorithms v1 code:

julia-paralg1.cxx
37 int main()
38 {
39 vector<pixel_type> v(DIM*DIM);
40
41 ⶩⷵ run kernel function to compute the Julia set⵴ⷀ⸌
42 vector<coord_type> xs(DIM);
43 iota(xs.begin(), xs.end(), 0);
44
45 auto t0 = now(xs.data()); ⶩⷵ get start time_point
46 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
47 {
48 transform(
49 executionⶇ⷏par_unseq,
50 xs.begin(), xs.end(),
51 v.begin()+y*DIM,
52 [y](coord_type const x) { return julia(x,y); }
53 );
54 }
55 auto t1 = now(v.data(),t0); ⶩⷵ get stop time_point

74 / 85



C++17 Parallel Algorithms v1 (con’t)

56
57 ⶩⷵ output elapsed time in seconds⵴ⷀ⸌
58 cout ㄲ㄰ "elapsed time: " ㄲ㄰ chronoⶇ⷏duration<double>(t1-t0).count() ㄲ㄰ " seconds\n";
59
60 ⶩⷵ write output to file⵴ⷀ⸌
61 ofstream out("julia.dat");
62 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
63 for (coord_type x = 0; x ㅍ〼 DIM; ㇌㇏x)
64 {
65 if (v[y*DIM+x] かや 1)
66 out ㄲ㄰ x ㄲ㄰ ' ' ㄲ㄰ y ㄲ㄰ '\n';
67 }
68 }

75 / 85



C++17 Parallel Algorithms v2
C++17 parallel algorithms v2 code:

julia-paralg2.cxx
37 int main()
38 {
39 vector<pixel_type> v(DIM*DIM);
40
41 ⶩⷵ "kernel" code to compute the Julia set⵴ⷀ⸌
42 vector<pair<coord_type,coord_typeㄩㄫ indices;
43 indices.reserve(DIM*DIM);
44 for (coord_type i{}; i ㅍ〼 DIM; ㇌㇏i)
45 for (coord_type j{}; j ㅍ〼 DIM; ㇌㇏j)
46 indices.emplace_back(pair{i,j});
47
48 auto t0 = now(v.data(),indices); ⶩⷵ get start time_point
49 transform(
50 executionⶇ⷏par_unseq,
51 indices.begin(), indices.end(),
52 v.begin(),
53 [](auto const& p) constexpr { return julia(p.first,p.second); }
54 );
55 auto t1 = now(v.data(),t0); ⶩⷵ get stop time_point

76 / 85



C++17 Parallel Algorithms v2 (con’t)

56
57 ⶩⷵ output elapsed time in seconds⵴ⷀ⸌
58 cout ㄲ㄰ "elapsed time: " ㄲ㄰ chronoⶇ⷏duration<double>(t1-t0).count() ㄲ㄰ " seconds\n";
59
60 ⶩⷵ write output to file⵴ⷀ⸌
61 ofstream out("julia.dat");
62 for (coord_type y = 0; y ㅍ〼 DIM; ㇌㇏y)
63 for (coord_type x = 0; x ㅍ〼 DIM; ㇌㇏x)
64 {
65 if (v[y*DIM+x] かや 1)
66 out ㄲ㄰ x ㄲ㄰ ' ' ㄲ㄰ y ㄲ㄰ '\n';
67 }
68 }

77 / 85



Compiling and Linking Steps

On our clusters, load one of these module sets:
GCC: module load googlebenchmark gcc tbb
Clang: module load googlebenchmark clang tbb
Intel: module load googlebenchmark intel tbb
NVHPC (CPU): module load googlebenchmark nvhpc
NVHPC (GPU): module load googlebenchmark nvhpc cuda

78 / 85



Compiling and Linking Steps (con’t)

Compiling and linking C++ code with GCC:
Serial: g㇌㇏ -O3
OpenMP: g㇌㇏ -O3 -fopenmp
ParAlg: g㇌㇏ -std=c㇌㇏17 -O3
ParAlgLink: -ltbb -lbenchmark

79 / 85



Compiling and Linking Steps (con’t)

Compiling and linking C++ code with Clang:
Serial: clang㇌㇏ -O3
OpenMP: clang㇌㇏ -O3 -fopenmp
ParAlg: clang㇌㇏ -std=c㇌㇏17 -O3
ParAlgLink: -ltbb -lbenchmark

80 / 85



Compiling and Linking Steps (con’t)

Compiling and linking C++ code with Intel OneAPI:
Serial: icpx -O3 -fp-model precise
OpenMP: icpx -O3 -fp-model precise -fopenmp
ParAlg: icpx -O3 -std=c㇌㇏17 -fp-model precise
ParAlgLink: -ltbb -lbenchmark

81 / 85



Compiling and Linking Steps (con’t)

Compiling and linking C++ code with NVIDIA’s nvhpc for CPU only:
Serial: nvc㇌㇏ -O3
OpenMP: nvc㇌㇏ -O3 -fopenmp
ParAlg: nvc㇌㇏ -O3 -std=c㇌㇏17 -stdpar=multicore
ParAlgLink: -lbenchmark

82 / 85



Compiling and Linking Steps (con’t)

Compiling and linking C++ code with NVIDIA’s nvhpc for CPU & GPU:
Serial: nvc㇌㇏ -O3
OpenMP: nvc㇌㇏ -O3 -fopenmp
ParAlg: nvc㇌㇏ -std=c㇌㇏17 -O3 -stdpar=gpu -gpu=managed
ParAlgLink: -lbenchmark

To run on a GPU NVHPC’s -stdpar=gpu requires:
using dynamically allocated memory, e.g., stdⶇ⷏vector
using lambda functions and/or templated function objects that do not capture host
state / call stack variables

83 / 85



Compiling and Linking Steps (con’t)

To generate compiler reports on missed vectorization, add these options when compiling:

GCC: -fopt-info-vec-missed
Clang: -Rpass-missed=loop-vectorize
Intel OneAPI: -qopt-report
NVHPC: -Minfo

84 / 85



Some Example Timings

On a 16-core AMD Threadripper with two hyperthreads per core using GCC and
-O3 -march=native:

Serial: 8.25s
OpenMP: 1.14s
ParAlg: 0.3s

85 / 85


	Using High-Performance, Advanced, and Cloud Computing Resources for Research
	Title Page
	SHARCNET, Compute Ontario, and the Alliance
	What is SHARCNET?
	What is Compute Ontario?
	What is the Digital Research Alliance of Canada?
	Some Important Details
	Acquiring an Account

	Available Resources
	Hardware Resources
	Other Resources

	Cluster Computing Environment
	Compute Jobs
	Clusters Are Different Than Your Computer
	Development and Testing
	Maximizing Job Throughput
	Supported Software and Systems

	Why Use Supercomputing Resources?
	2024 Resource Allocation Competition (RAC)
	Questions, Answers, and Discussion

	Appendix
	Appendix Overview
	Software/Environment Modules on Clusters
	Slurm Scheduler Use
	sbatch
	sbatch Sequential Examples
	sbatch Multithreaded Examples
	sbatch MPI Examples
	sbatch Whole Node Example

	salloc
	scancel

	Julia Set Fractal Example
	Some C Code…
	Some C++ Code…
	C++ Code for Reliable Timings
	Parallelizing with OpenMP
	C++17 Parallel Algorithms v1
	C++17 Parallel Algorithms v2
	Compiling and Linking Steps
	Some Example Timings



